Influence Maximization in Switching-Selection Threshold Models

نویسندگان

  • Dimitris Fotakis
  • Thodoris Lykouris
  • Evangelos Markakis
  • Svetlana Obraztsova
چکیده

We study influence maximization problems over social networks, in the presence of competition. Our focus is on diffusion processes within the family of threshold models. Motivated by the general lack of positive results establishing monotonicity and submodularity of the influence function for threshold models, we introduce a general class of switching-selection threshold models where the switching and selection functions may also depend on the node activation history. This extension allows us to establish monotonicity and submodularity when (i) the switching function is linear and depends on the influence by all active neighbors, and (ii) the selection function is linear and depends on the influence by the nodes activated only in the last step. This implies a (1− 1/e− ε)-approximation for the influence maximization problem in the competitive setting. On the negative side, we present a collection of counterexamples establishing that the restrictions above are essentially necessary. Moreover, we show that switching-selection threshold games with properties (i) and (ii) are valid utility games, and thus their Price of Anarchy is at most 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in Information Diffusion and Influence Maximization of Complex Social Networks

1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Social Influence And Influence Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Influence Maximization for Fixed Heterogeneous Thresholds

Influence Maximization is a NP-hard problem of selecting the optimal set of influencers in a network. Here, we propose two new approaches to influence maximization based on two very different metrics. The first metric, termed Balanced Index (BI), is fast to compute and assigns top values to two kinds of nodes: those with high resistance to adoption, and those with large out-degree. This is done...

متن کامل

Revisiting Non-Progressive Influence Models: Scalable Influence Maximization

Influence maximization in social networks has been studied extensively in computer science community for the last decade. However, almost all of the efforts have been focused on the progressive influence models, such as independent cascade (IC) and Linear threshold (LT) models, which cannot capture the reversibility of choices. In this paper, we present the Heat Conduction (HC) model which is a...

متن کامل

Revisiting Non-Progressive Influence Models: Scalable Influence Maximization in Social Networks

While influence maximization in social networks has been studied extensively in computer science community for the last decade the focus has been on the progressive influence models, such as independent cascade (IC) and Linear threshold (LT) models, which cannot capture the reversibility of choices. In this paper, we present the Heat Conduction (HC) model which is a non-progressive influence mo...

متن کامل

Influence Maximization with ε-Almost Submodular Threshold Functions

Influence maximization is the problem of selecting k nodes in a social network to maximize their influence spread. The problem has been extensively studied but most works focus on the submodular influence diffusion models. In this paper, motivated by empirical evidences, we explore influence maximization in the nonsubmodular regime. In particular, we study the general threshold model in which a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014